Anoctamin-1/TMEM16A is the major apical iodide channel of the thyrocyte.

نویسندگان

  • L Twyffels
  • A Strickaert
  • M Virreira
  • C Massart
  • J Van Sande
  • C Wauquier
  • R Beauwens
  • J E Dumont
  • L J Galietta
  • A Boom
  • V Kruys
چکیده

Iodide is captured by thyrocytes through the Na(+)/I(-) symporter (NIS) before being released into the follicular lumen, where it is oxidized and incorporated into thyroglobulin for the production of thyroid hormones. Several reports point to pendrin as a candidate protein for iodide export from thyroid cells into the follicular lumen. Here, we show that a recently discovered Ca(2+)-activated anion channel, TMEM16A or anoctamin-1 (ANO1), also exports iodide from rat thyroid cell lines and from HEK 293T cells expressing human NIS and ANO1. The Ano1 mRNA is expressed in PCCl3 and FRTL-5 rat thyroid cell lines, and this expression is stimulated by thyrotropin (TSH) in rat in vivo, leading to the accumulation of the ANO1 protein at the apical membrane of thyroid follicles. Moreover, ANO1 properties, i.e., activation by intracellular calcium (i.e., by ionomycin or by ATP), low but positive affinity for pertechnetate, and nonrequirement for chloride, better fit with the iodide release characteristics of PCCl3 and FRTL-5 rat thyroid cell lines than the dissimilar properties of pendrin. Most importantly, iodide release by PCCl3 and FRTL-5 cells is efficiently blocked by T16Ainh-A01, an ANO1-specific inhibitor, and upon ANO1 knockdown by RNA interference. Finally, we show that the T16Ainh-A01 inhibitor efficiently blocks ATP-induced iodide efflux from in vitro-cultured human thyrocytes. In conclusion, our data strongly suggest that ANO1 is responsible for most of the iodide efflux across the apical membrane of thyroid cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TMEM16A(a)/anoctamin-1 Shares a Homodimeric Architecture with CLC Chloride Channels*

TMEM16A/anoctamin-1 has been identified as a protein with the classic properties of a Ca(2+)-activated chloride channel. Here, we used blue native polyacrylamide gel electrophoresis (BN-PAGE) and chemical cross-linking to assess the quaternary structure of the mouse TMEM16A(a) and TMEM16A(ac) splice variants as well as a genetically concatenated TMEM16A(a) homodimer. The constructs carried hexa...

متن کامل

The Ca2+-activated Cl− channel ANO1/TMEM16A regulates primary ciliogenesis

Many cells possess a single, nonmotile, primary cilium highly enriched in receptors and sensory transduction machinery that plays crucial roles in cellular morphogenesis. Although sensory transduction requires ion channels, relatively little is known about ion channels in the primary cilium (with the exception of TRPP2). Here we show that the Ca(2+)-activated Cl ((-)) channel anoctamin-1 (ANO1/...

متن کامل

Structure and function of TMEM16 proteins (anoctamins).

TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithe...

متن کامل

Anoctamin 1 is apically expressed on thyroid follicular cells and contributes to ATP- and calcium-activated iodide efflux.

BACKGROUND/AIMS Iodide efflux from thyroid cells into the follicular lumen is essential for the synthesis of thyroid hormones, however, the pathways mediating this transport have only been partially identified. A calcium-activated pathway of iodide efflux has long been recognized, but its molecular identity unknown. Anoctamin 1 (ANO1) is a calcium-activated chloride channel (CaCC), and this stu...

متن کامل

Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A.

TMEM16A (anoctamin 1, Ano1), a member of a family of 10 homologous proteins, has been shown to form an essential component of Ca(2+)-activated Cl(-) channels. TMEM16A-null mice exhibit severe defects in epithelial transport along with tracheomalacia and death within 1 mo after birth. Despite its outstanding physiological significance, the mechanisms for activation of TMEM16A remain obscure. TME...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 307 12  شماره 

صفحات  -

تاریخ انتشار 2014